"/>

Chinese, American scientists develop tiny gel balls to predict cancer

Source: Xinhua    2018-05-15 00:52:35

WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

Although small on a human scale, the traction plays a fundamental role in cell physiology.

"If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

"The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

This ability to quantify force in cells may be very important to cancer cell research, Wang said.

The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

"We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

"Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

Editor: Mu Xuequan
Related News
Xinhuanet

Chinese, American scientists develop tiny gel balls to predict cancer

Source: Xinhua 2018-05-15 00:52:35

WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

Although small on a human scale, the traction plays a fundamental role in cell physiology.

"If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

"The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

This ability to quantify force in cells may be very important to cancer cell research, Wang said.

The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

"We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

"Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

[Editor: huaxia]
010020070750000000000000011105091371788141
三分快3 大发app 凤凰彩票app 乐发iv游戏平台 凤凰彩票大厅 乐发彩票 乐发彩票app下载 大发彩票 乐发v官网 乐发lll 乐发lv入口 乐发iv首页 乐发ll登录 凤凰彩票大厅 乐发官网 乐发ii下载入口 乐发ll 乐发v平台 乐发v官网 乐发lll 乐发lv入口 乐发iv首页 乐发ll登录 乐发lv 乐发lll安装 乐发lv 乐发登录入口 乐发iv游戏平台 凤凰彩票登录 网信彩票 彩神 彩神彩票官方网站 彩神彩票官网首页 彩神官方app下载安卓版 凤凰彩票登录 彩神v3 凤凰彩票app下载 彩神官方app下载安卓版 网信快三 一分快3 快三彩票购彩平台 凤凰彩票官方 快3官网 网信彩票 快3app 网信彩票平台 百姓彩票平台 网信平台官网 快3app下载 百姓彩票 每日彩票 快3app 百姓彩票 每日彩票 快3app 百姓彩票平台 幸运5分彩快3 快3彩票app下载 百姓彩票网站网址 大发10分PK10 快3下载 网信彩票平台 网信平台官网 快3彩票官网app 凤凰彩票官方 彩神彩票 大发10分PK10 彩神v3 大发彩票app下载 百姓彩票网站网址 彩神购彩平台 每日彩票 官方正规快三彩票平台 彩神彩票购彩平台 百姓彩票 凤凰彩票购彩平台 凤凰彩票app下载 彩神官方app下载安卓版 网信快三 一分快3 快三彩票购彩平台 凤凰彩票官方 彩神彩票 大发10分PK10 彩神v3 凤凰彩票登录 乐发lv 乐发∨Il 百姓彩票网站网址 乐发彩票 乐发彩票官方网站 乐发lll安装 百姓彩票网站网址 凤凰彩票app下载 大发10分PK10 乐发2 乐发app 凤凰彩票 大发彩票app 乐发登录入口 乐发ll登录 乐发v官网 乐发官网 大发彩票app下载 凤凰彩票购彩平台 彩神彩票 官方正规快三彩票平台 一分快3 百姓彩票网站网址 凤凰彩票app下载 大发10分PK10 乐发2 乐发app 凤凰彩票 大发彩票app 乐发登录入口 乐发ll登录 乐发v官网 乐发官网 大发彩票app下载 凤凰彩票购彩平台 彩神彩票 官方正规快三彩票平台 1分快三平台 百姓彩票平台 凤凰彩票登录 幸运5分彩快3 彩神 乐发彩票 乐发 大发彩票 乐发iv游戏平台 乐发lv 乐发lll 乐发ii下载入口 乐发彩票官方网站 凤凰彩票官方网站 凤凰快3 彩神彩票官网首页 1分快三平台 百姓彩票平台 凤凰彩票登录 幸运5分彩快3 彩神 乐发彩票 乐发 大发彩票 乐发iv游戏平台 乐发lv 凤凰彩票app 乐发app 网信彩票平台 网信彩票平台 乐发iv游戏平台 凤凰彩票app 乐发lv 乐发彩票app下载 凤凰彩票app 网信彩票平台 乐发彩票app下载 乐发lv 乐发app 大发彩票安卓下载 大发彩票安卓下载 大发彩票 乐发彩票app下载 网信彩票平台 乐发iv游戏平台 彩神彩票 乐发彩票中心 极速快3彩票平台 人人快三凤凰 大发彩票app 大发彩票大全 乐发彩票 彩神彩票官方网站 乐发app 酷天堂彩票平台 凤凰彩票app下载 凤凰彩票大厅 凤凰彩票app 极速快3彩票平台 凤凰彩票 凤凰快3 乐发ll官网 乐发彩票中心 正规快三送彩金平台 凤凰彩票官方 乐发ll 乐发 网信彩票 彩神彩票 彩神彩票官方网站 大发彩票app 网信彩票用户 百姓快三 百姓彩票平台 乐发lv 乐发彩票app下载 彩信平台 网信彩票 乐发彩票官方网站 乐发∨Il 人人快三凤凰 凤凰彩票 凤凰快3 乐发ll官网 乐发彩票中心 正规快三送彩金平台 凤凰彩票官方 乐发ll 乐发 网信彩票 彩神彩票 彩神彩票官方网站 人人快三凤凰 乐发彩票 彩神彩票 乐发iv游戏平台 乐发彩票 大发彩票中心 凤凰彩票登录 凤凰彩票app 彩神彩票 大发彩票 乐发ll 大发彩票app 凤凰快3 凤凰彩票 彩神彩票 乐发ll 凤凰彩票 乐发lll 凤凰彩票大厅 网信彩票 彩神彩票 乐发lv 快盈彩票 乐发彩票官方网站 盈彩网投资平台 大发官网 一分时时彩 乐发lv 快3平台 凤凰快3 乐发ll 全民彩票 乐发彩票官方网站 百姓彩票 乐发彩票 大发彩票 极速快3 乐发app 大发官网 乐发lll 快3平台 凤凰快3 乐发ll 全民彩票 乐发彩票官方网站 百姓彩票 乐发彩票 大发彩票 极速快3 乐发app 彩神iv 大发彩票app 大小单双平台 一分pk10 乐发lv 快盈彩票 乐发官网 快彩彩票 百姓彩票 凤凰彩票大厅 网信彩票 乐发彩票中心 网信快3 乐发 彩神xl 三分快3 大发彩票 大发官网 乐发lll 快3平台 凤凰快3 乐发ll 全民彩票 乐发彩票官方网站 百姓彩票 乐发彩票 乐发彩票官方网站 大发彩票 乐发 分分快3 彩神vl 55世纪 55世纪 凤凰快3 乐发彩票 乐发lv welcome凤凰彩票 乐发ll 1分快3 彩神 彩神ll 1分快3官网 1分快3的平台 welcome凤凰彩票 三分快3 彩神x 彩神vl 凤凰彩票 彩神xl 大发彩票 凤凰彩票大厅 乐发官网 乐发ll 乐发lll 乐发lv 大发彩票app 大发彩票 乐发 乐发彩票 乐发彩票中心 凤凰快3 乐发彩票 彩神xl 腾讯快3 大发彩票 彩神xl 大发彩票 乐发彩票 大发彩票app 快3平台 乐发 1分快3 乐发彩票 彩神x 凤凰快3 彩神xl 彩吧助手 大发彩票app 快3平台 大发排列3 彩神iv 彩神vl 乐发IV 彩神x 一分pk10 大发排列3 乐发lv 快3彩票 乐发app下载 三分快3 快三平台助手 乐发彩票ll 彩神iv 乐发lll下载 盈彩网投资平台 乐发Ⅲ 一分pk10 凤凰彩票 乐发Vll 大发官网 乐发ll 大发彩票 乐发1 凤凰快3 彩神vl 乐发lx 百姓彩票 乐发VI 彩神x 乐发IV 极速快3 乐发 凤凰快3 网信快3 乐发lv 快3彩票 乐发app下载 三分快3 快三平台助手 乐发彩票ll 彩神iv 乐发lll下载 盈彩网投资平台 乐发Ⅲ 凤凰彩票大厅 乐发lv 乐发lv 乐发lv 凤凰彩票 大发彩票 大发彩票 凤凰彩票 乐发lv 凤凰彩票 凤凰彩票 乐发lv 乐发ll 凤凰彩票app下载 凤凰彩票 凤凰彩票 乐发lv 乐发ll 凤凰彩票app下载 凤凰彩票 凤凰彩票 乐发lv 彩神x 乐发 乐发ll 极速快3 乐发lv 乐发彩票中心 快3彩票 凤凰彩票大厅 彩神x 凤凰彩票app 分分快3 网信彩票 网盟彩票 凤凰彩票 百姓彩票 乐发 快彩彩票 乐发彩票 快3平台 百姓彩票 大小单双平台 凤凰快3 彩神xl 一分pk10 乐发lv 三分快3 大发彩票 乐发彩票 快3平台 百姓彩票 大小单双平台 凤凰快3 彩神xl 一分pk10 乐发lv 三分快3 大发彩票 极速快3 乐发ll 网信彩票 乐发lv 全民彩票 凤凰彩票app下载 快盈彩票 大发彩票app 大发官网 凤凰彩票 彩神iv 大发彩票 网信快3 凤凰彩票 百姓彩票